January 2012

Methylene chloride linked to worker death in tank

Prevention Points

• Use safer methods and less toxic chemicals to remove paint
• Follow confined space regulations when working with toxic chemicals in enclosed spaces

The California Fatality Assessment and Control Evaluation (CA/FACE) program tracks and investigates cases of fatal injuries at work, and makes prevention recommendations for employers and workers. The CA/FACE program is investigating the preventable death of a worker who was using a paint stripper inside a tank at a paint manufacturing company. A second worker was also nearly killed after attempting a rescue.

Opening of paint tank

What happened? The victim was working by himself using a paint stripper to remove dried paint from the inside of a tank. The product contained methylene chloride (at least 60%), methanol and mineral spirits. The tank was 7’ x 7’ x 9’ with a 2’ x 7’ opening at the top, and was a permit-required confined space under California OSHA regulations. The space was not adequately ventilated and the victim was not trained in confined space entry. The company had not stationed an attendant at the tank entrance to monitor the victim while he worked in the tank. A co-worker was overcome when he attempted a rescue after seeing the victim unconscious at the bottom of the tank. The victim could not be resuscitated. The cause of death according to the local coroner was asphyxia due to inhalation of dichloromethane (methylene chloride). The co-worker was hospitalized and treated for methylene chloride poisoning.

What was the cause? Both of the workers were overcome by dangerous levels of solvent vapors inside the paint tank. The paint tank was a permit-required confined space, but proper testing, entry and rescue procedures were not in place to prevent both workers from being overcome by toxic vapors. The victim was wearing a cartridge respirator that did not adequately protect against inhaling methylene chloride vapors.

What should be done to prevent this from happening again? Methylene chloride has been linked by Federal OSHA to over 50 worker deaths nationwide since the mid-1980s, primarily from use in poorly ventilated spaces. Methylene chloride is also considered by many regulatory agencies in the U.S. to cause cancer, and is banned from many uses in Europe.

Employers should establish procedures to clean paint tanks more frequently with water-based materials, before the paint is cured. If this is not possible, the cured paint should be stripped with abrasive removal methods. If toxic chemicals must be used inside a tank, employers must provide worker training in confined space entry and must follow OSHA regulations during an entry. This includes providing proper ventilation, supplied air respiratory protection, air monitoring, communications, and means of rescue and retrieval.

To read more about safety in confined spaces:
http://www.dir.ca.gov/dosh/dosh_publications/ConfSpa.pdf
Welcome to...

Health Hazards in Construction

Construction workers are exposed to a variety of health hazards every day. These men and women have the potential for becoming sick, ill and disabled for life.

Learn the health hazards on your job and know how to protect yourself…

Sadly, these health hazards (e.g., dangerous dust and other chemicals) can be unexpectedly brought home…

Learn how to protect your family!

This publication contains:

1. The purpose for the Occupational Safety and Health Administration (OSHA) and its enforcement duty under law.
2. Common health hazards found in construction.
3. An explanation of Industrial Hygiene and toxicology.
4. Important terms and definitions used in health standards and toxicology.
5. Procedures for how to anticipate, recognize, evaluate and control health hazards in construction.
7. Respiratory protection program for contractors.
8. Hearing conservation program for contractors.

This program is dedicated to all the workers who have sustained a life threatening or disabling illness as a result of an occupational exposure.
Acknowledgements & Credits

This publication was produced by:

Construction Safety Council
4100 Madison Street
Hillside, IL 60162
(800) 552-7744 www.buildsafe.org

Copyright © 2012

The Construction Safety Council will like to thank the following for their contributions and support:

- The Occupational Safety and Health Administration (OSHA)
- The National Institute for Occupational Safety and Health (NIOSH)
- The United States Environmental Protection Agency (EPA)
- Chicago Area Laborers – Employer Cooperation and Education Trust (LECET)
- United Union of Roofers, Waterproofers and Allied Workers
- elcoshimages.org
- LeBlanc Building Co., Inc.
- Milton R. Chicas
- David Allie (4-Safety.com)
- John Dimos, MS, CIH

GENERAL DISCLAIMER

This material is intended for training purposes only. Its purpose is to inform employers and employees of best practices in construction safety & health. This material is not a substitute for any provision of the Occupational Safety and Health Administration (OSHA) or any standards issued by OSHA. If at any time it is discovered that the materials presented vary from Federal or State OSHA regulations, American National Standards Institute (ANSI), EPA regulations, state laws or local ordinances, it is understood that those regulations, laws and ordinances will take precedence over the materials presented herein. In some cases, the information given may imply a higher level of protection than required in some Federal or State OSHA regulations. The mention of any products or materials by brand name in no way constitutes endorsement. Any products or materials not mentioned within this manual that may be considered acceptable as protective devices, equipment, or practices is not intentional and should not rule out their acceptability as employee or environmental protection.

OSHA DISCLAIMER

This material was produced under grant number SH-19495-09-60-F-17 from the Occupational Safety and Health Administration, U.S. Department of Labor. It does not necessarily reflect the views or policies of the U.S. Department of Labor, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.
Controlling exposures to occupational hazards is the fundamental method of protecting workers. Traditionally, a hierarchy of controls has been used as a means of determining how to implement feasible and effective controls.

OSHA requires that employers use the hierarchy of controls in order of preference for protecting the worker.

Hierarchy of controls in order of preference:

1. **Elimination of hazard;** Substitution with safe alternative.

2. **Engineering;** Ventilation & wet methods.

3. **Administrative;** Work practices, scheduling workers to minimize exposure, extended breaks, etc.

4. **Personal Protective Equipment (PPE);** Respiratory and hearing protection, protection of face, hand, feet, eyes & whole body.

The idea behind this hierarchy is that the control methods at the top of the list are potentially more effective and protective than those at the bottom. Following the hierarchy normally leads to the implementation of inherently safer job-sites, ones where the risk of illness or injury has been substantially reduced.
Elimination & Substitution

Elimination and substitution, while most effective at reducing hazards, also tend to be the most difficult to implement in an existing process or job-site. If the project is still at the design or development stage, elimination and substitution of hazards may be inexpensive and simple to implement. For an existing process, major changes in equipment and procedures may be required to eliminate or substitute for a hazard.

Elimination & Substitution include:

- Automate the process by using equipment; remove or isolate the worker.
- Select and use a less toxic chemical; in an effort to reduce occupational illness, chemical manufacturers’ have created less harmful substitutes.
- Sub-contract out jobs to more qualified people; know the limitations of your workers and be prepared to solicit the services of specially trained and equipped contractors. Some work may require a special license, i.e. lead & asbestos.

Elimination & Substitution Example...

Demolition of structure using mechanical sheers; combined with the safe work practice of spraying water will significantly reduce worker exposure to harmful dust.
Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. This barrier can be placed at the source of the hazard, between the source and the worker, or at the worker. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The initial cost of engineering controls can be higher than the cost of administrative controls or personal protective equipment, but over the longer term, operating costs are frequently lower, and in some instances, can provide a cost savings in other areas of the process. Examples of engineering controls include, wet methods, mechanical ventilation and dust collection systems.

Engineering controls include:

- Using dust suppression (wet methods) and/or dust collection systems.

 OR

- Installing and using mechanical ventilation; general (dilution) and local (exhaust) ventilation systems.

Engineering Control Example...

Water suppression system on concrete saw.

Engineering Control Example...

Dust suppression system on concrete saw using supplied water.
Dust Suppression & Collection Systems

Some studies have shown that wet cutting methods can reduce average respirable dust levels by up to 94 percent. However, if an employer determines that the use of a wet saw in a particular circumstance is not feasible, and the brick, concrete block or masonry must be cut dry, then the employer would be required to explore other engineering control options. Dust collection systems can be used, but they are typically not sufficient to reduce exposures below permissible limits and employees will usually need to be protected with appropriate respirators as well; monitoring the air will confirm exposure.

Mechanical Ventilation

Mechanical ventilation consists of either *general (dilution)* ventilation systems or *local (exhaust)* systems.

General (Dilution) Ventilation…

Forces fresh air into an area and dilutes contaminants; this allows air to move through a space which ensures a fresh continual supply.

WARNING! Pure oxygen must never be used for ventilation purposes.

Local (Exhaust) Ventilation…

Removes contaminated air at its source; this prevents harmful dust, fumes & mists from contaminating the breathing air of the worker.

WARNING! Contaminated air exhausted from a working space must be discharged into the open air or otherwise clear of the source of intake air.
General (Dilution) Ventilation

General (dilution) ventilation must be of sufficient capacity and so arranged as to produce the number of air changes necessary to maintain breathing air to safe limits, as defined by OSHA permissible exposure limits (PELs).

General (dilution) ventilation works best when:
- Air contaminants are widely disbursed throughout the area.
- Toxicity levels and concentrations are low.

General (dilution) ventilation can be applied to most jobs by simply opening a window or door and blowing fresh air into a space using a fan. *Turn the fan around to blow air out and it becomes an exhaust ventilation system.*

Local (Exhaust) Ventilation

Local (exhaust) ventilation consists of freely movable hoods intended to be placed by the welder or burner as close as practicable to the work. This system must be of sufficient capacity and so arranged as to remove fumes and smoke at the source and keep the concentration of them in the breathing zone within safe limits as defined by OSHA permissible exposure limits (PELs).

Local (exhaust) ventilation works best when:
- Air contaminants are generated at a single source.
- There’s a need to remove high levels and concentrations of a toxic material.
Administrative Controls

Administrative controls are changes in work procedures such as written safety policies, rules, supervision, schedules, and training with the goal of reducing the duration, frequency, and severity of exposure to hazardous chemicals or situations.

Administrative controls include:

- Gathering all specialty equipment, including, ventilators, warning signs, personal protective equipment, etc. before starting work.
- Performing operations that involve toxic substances at times when other workers are not present.
- Isolating the work to a few employees.
- Rotating workers through various job assignments.
- Prohibiting workers from working around hazardous substances once they have reached a predetermined level of exposure.
- Requiring workers in hot environments to take breaks in cool rest areas and providing fluids for rehydration.
- Prohibiting worker access to areas involving hazards such as lasers, toxic materials, or excessive noise.

Isolate the Work

Isolation is a method of limiting exposure to only those employees directly working with a particular substance. It may be as simple as erecting signs and barricades to keep non-essential personnel away from potential exposure areas. The area inside the barricades is known as a regulated area.

Work Practice Controls

Safe work practices include your company’s general workplace rules and other operation-specific rules. For example, even when a hazard is controlled, exposure can occur if the worker is not familiar with such controls.

Train employee on…

- Proper housekeeping & good personal hygiene.
- The proper procedures that minimize exposures.
- How to inspect and maintain process and equipment on a regular basis.
- No eating, drinking, smoking, chewing tobacco or gum, and applying cosmetics in hazardous areas.
Work Practice Control Example – Dust Control

Sweeping and the blowing of dust creates an inhalation hazard; consider the use of a vacuum to clean up job-sites.

Take precautions while sweeping!

Safe work practices while sweeping:

- Use a sweeping compound to reduce airborne dust.
- Wear personal protective equipment (respirator).
- Schedule clean-up operations appropriately.
- Warn others and clear the area of those who are affected by the dust and are not protected.

How to Use a HEPA Vacuum

A preferred method of controlling dust on a job-site is to use a vacuum; using a high efficiency particulate air (HEPA) vacuum will keep exposure levels down and minimize worker exposure to harmful dust.

To use a HEPA vacuum:

- Lightly mist area with water to keep dust levels down. Some HEPA vacuums can combine a wet wash with the vacuum. Read the manufacturer’s instructions on how to use it.
- Begin with high areas first. Clean ceilings and walls working downward. Vacuum all surfaces in the room. Work in the direction furthest from the entry door toward it.
- Move slowly.
- Remember, dust can stick to surfaces. Vacuum slowly so the HEPA vacuum can pick up all the dust.

Using vacuum technology will greatly reduce exposure to the inhalation of dust and potential toxins.
Personal Protective Equipment (PPE)

Controlling a hazard at its source is the best way to protect workers. However, when engineering, work practices and administrative controls are not feasible or do not provide sufficient protection, employers must provide personal protective equipment (PPE) to the employee and ensure its proper use.

Personal protective equipment (PPE) can only be used as a last resort!

Consideration and use of PPE is only allowed when:

- Engineering controls and/or work practices are not feasible;
- Engineering controls or work practices are being implemented;
- Engineering controls or work practices do not effectively reduce exposure to acceptable limits, or;
- In cases of emergency (e.g., confined space rescue, area evacuation, etc.)

Feasible (Definition)

There are two key factors that would determine whether a control is feasible or not: technological feasibility and economic feasibility.

Technologically feasible: this is fairly straight forward, as long as all engineering and administrative controls are being implemented and yet levels still remain above permissible exposure limits (PELs), then in respect to the work being done; it is technologically not feasible to reduce exposures any lower. PPE may be worn in addition to engineering controls and administrative controls.

Economic feasible: OSHA would consider administrative or engineering controls economically feasible when the cost of implementing such controls will not threaten the employer’s ability to remain in business, or if such a threat to viability results from the employer’s failure to meet industry safety and health standards.

OSHA interprets the term “feasible” to conform to its ordinary meaning... “Capable of being done”; if a recognized and accepted engineering or administrative control exists, it must be implemented before allowing the use of personal protective equipment, such as respirators and hearing protectors.
Important Concerns Regarding PPE

The purpose of protective clothing and equipment is to shield or isolate individuals from the chemical, physical, and biological hazards that may be encountered; PPE does not eliminate any hazard. During some operations, it is not always apparent when exposure occurs. Some hazards are invisible and offer no warning.

Important considerations for PPE:

- No one piece of protective equipment and clothing is capable of protecting against all hazards.
- The use of protective clothing can itself create significant wearer hazards, such as heat stress, physical and psychological stress, in addition to impaired vision, mobility and communication.

In general, the greater the level of protective clothing, the greater the associated risks, and for any given situation, equipment and clothing should be selected that provides an adequate level of protection. Overprotection as well as under-protection can be hazardous and should be avoided.

Questions regarding personal protective equipment (PPE):

- Is the device approved?
- Is the device appropriate for the type of hazard?
- Is the worker wearing the device properly trained to understand the use, limitations and care instructions of the device?
- Does the material have sufficient strength to withstand the physical stress of the tasks at hand?
- Will the material withstand repeated use after contamination and decontamination?
- Is the material flexible or pliable enough to allow end users to perform needed tasks?
- Will the material maintain its protective integrity and flexibility under hot and cold extremes?
HMIS (Hazardous Materials Identification System), developed by the National Paint and Coatings Association (NPCA), is a numerical hazard rating that incorporates the use of labels with color-coded bars. A special code identifying appropriate personal protective equipment (PPE) is also listed.

NOTE: Safety glasses must conform to the American National Standards Institute (ANSI Z 87.1 – Practice for Occupational & Educational Eye and Face Protection.

NOTE: Gloves must be selected based on type of chemical being used (see Chemical Glove Selection Chart, page 197).

HAZARDOUS MATERIALS IDENTIFICATION SYSTEM

<table>
<thead>
<tr>
<th>HAZARD INDEX</th>
<th>PERSONAL PROTECTION INDEX</th>
</tr>
</thead>
</table>
| 4 = SEVERE HAZARD | A
Safety Glasses |
| 3 = SERIOUS HAZARD | B
Splash Goggles |
| 2 = MODERATE HAZARD | C
Face Shield |
| 1 = SLIGHT HAZARD | D
Gloves |
| 0 = MINIMAL HAZARD | E
Boots |
| | F
Synthetic Apron |
| | G
Full Suit |
| | H
Dust Respirator |
| | I
Vapor Respirator |
| | J
Dust & Vapor Respirator |
| | K
Full Face Respirator |
| | L
Airline Hood or Mask |
| | M
X
Consult your supervisor for special handling instructions. |

An asterisk (*) or other designation corresponds to additional information on a data sheet or separate chronic effects notification.
Employers must provide and pay for personal protective equipment (PPE).

Personal Protective Equipment (PPE)

PPE is equipment worn to minimize exposure to a variety of hazards. Examples include items such as gloves, foot and eye protection, hearing protection, hard hats and respirators.

Employer Obligations
- Perform a “hazard assessment” of the workplace to identify and control physical and health hazards.
- Identify and provide appropriate PPE for employees.
- Train employees in the use and care of the PPE.
- Maintain PPE, including replacing worn or damaged PPE.
- Periodically review, update and evaluate the effectiveness of the PPE program.

Worker Responsibility:
- Properly wear PPE.
- Attend training sessions on PPE.
- Care for, clean and maintain PPE.
- Inform a supervisor of the need to repair or replace PPE.

Note: The employer must pay for replacement PPE, except when the employee has lost or intentionally damaged the PPE.

Employees Must Pay for Personal Protective Equipment (PPE)

With few exceptions, OSHA requires employers to pay for personal protective equipment used to comply with OSHA standards; employers cannot require workers to provide their own PPE. Even when a worker provides his or her own PPE, the employer must ensure that the equipment is adequate to protect the worker from hazards at the workplace.

Employers are not required to pay for:
- *Everyday clothing*; such as long-sleeve shirts, long pants and normal work boots (including protective toe).
- *Ordinary clothing*; such as winter coats, jackets and gloves.
Limitations & Use of Respirators

Engineering and work practice controls are generally regarded as the most effective methods to control exposures to airborne hazardous substances. OSHA considers the use of respirators to be the least satisfactory approach to exposure control because…

- All respirators leak!
- Respirators provide adequate protection only if employers ensure, on a constant basis, that they are properly fitted and worn.
- Respirators protect only the employees who are wearing them from a hazard, rather than reducing or eliminating the hazard from the workplace as a whole (which is what engineering and work practice controls do).
- Respirators are uncomfortable to wear, cumbersome to use, and interfere with communication in the workplace, which can often be critical to maintaining safety and health.

The costs of operating a functional respiratory protection program are substantial — including regular medical examinations, fit testing, training, and the purchasing and maintenance of equipment.

Use Only NIOSH Approved Respirators!

Respirator examples...

| Half-Mask Negative Pressure Air Purifying (Elastomeric Type) | Half-Mask Negative Pressure Air Purifying Filtering Facepiece (Disposable) |

Prioritize your efforts — justify your actions using the hierarchy of controls; ensure compliance with applicable OSHA standards and adequately protect and inform employees of potential health hazards.
The appropriate respirator will depend on the contaminant(s) to which you are exposed and the protection factor (PF) required. Required respirators must be NIOSH-approved and medical evaluation, fit testing and training must be provided before use.

<table>
<thead>
<tr>
<th>Respirator Type</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved filtering facepieces</td>
<td>can be used for dust, mists, welding fumes, mold, etc. They do not provide protection from gases or vapors. DO NOT USE FOR ASBESTOS.</td>
<td>Disposable & easy to breathe through – easier to use under welding hoods/helmets and with face shields. Least protection (rated the same as elastomeric half-face). Not allowed for use in atmospheres with less than 19.5% oxygen.</td>
</tr>
<tr>
<td>Half-face respirators (elastomeric)</td>
<td>can be used for protection against most vapors, acid gases, dust or welding fumes, mold. Cartridges/filters must match contaminant(s) and be changed periodically.</td>
<td>Can be used with a variety of cartridges/filters. Requires regular cleaning and periodic disinfecting, requires maintenance and replacement of parts. Not allowed for use in atmospheres with less than 19.5% oxygen.</td>
</tr>
<tr>
<td>Full-face respirators (elastomeric)</td>
<td>are more protective than half-face respirators. They can also be used for protection against most vapors, acid gases, dust or welding fumes and mold. The face-shield protects face and eyes from irritants and contaminants. Cartridges/filters must match contaminant(s) and be changed periodically.</td>
<td>Can be used with a variety of cartridges/filters. Built in safety eye protection (ANSI Z87). Requires regular cleaning and periodic disinfecting, requires maintenance and replacement of parts. Not allowed for use in atmospheres with less than 19.5% oxygen.</td>
</tr>
<tr>
<td>Powered-air-purifying respirators (PAPR)</td>
<td>offers breathing comfort from a battery powered fan which pulls air through filters and blows air into the facepiece or hood. Hooded PAPR’s may be worn by workers who have beards under certain circumstances. Cartridges/filters must match contaminant(s) and be changed periodically.</td>
<td>May be loose-fitting or tight-fitting. Can be used with a variety of cartridges/filters. Built in safety eye protection (ANSI Z87). Easier to fit, easier on heart and lungs. Requires regular cleaning and periodic disinfecting, requires maintenance and replacement of parts. Not allowed for use in atmospheres with less than 19.5% oxygen.</td>
</tr>
<tr>
<td>Self-Contained Breathing Apparatus (SCBA)</td>
<td>is used for entry and escape from atmospheres that are considered immediately dangerous to life and health (IDLH) or oxygen deficient. They use their own air tank.</td>
<td>Built in safety eye protection (ANSI Z87). Easier to fit. Requires regular cleaning and periodic disinfecting, requires maintenance and replacement of parts. Requires Compressed Gas Association (CGA) Grade D breathing air. Can be used in Oxygen deficient atmospheres (less than 19.5% oxygen).</td>
</tr>
</tbody>
</table>
Table 1. (29 CFR 1910.134) -- Assigned Protection Factors

<table>
<thead>
<tr>
<th>Type of respirator(^1,\ 2)</th>
<th>Quarter mask</th>
<th>Half mask</th>
<th>Full facepiece</th>
<th>Helmet/hood</th>
<th>Loose-fitting facepiece</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air-Purifying Respirator</td>
<td>5</td>
<td>10</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Powered Air-Purifying Respirator (PAPR)</td>
<td></td>
<td>50</td>
<td>1,000</td>
<td>25/1,000</td>
<td></td>
</tr>
<tr>
<td>Supplied-Air Respirator (SAR) or Airline Respirator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Demand mode</td>
<td></td>
<td>10</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Continuous flow mode</td>
<td></td>
<td>50</td>
<td>1,000</td>
<td>25/1,000</td>
<td></td>
</tr>
<tr>
<td>• Pressure-demand or other positive-pressure mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-Contained Breathing Apparatus (SCBA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Demand mode</td>
<td></td>
<td>10</td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>• Pressure-demand or other positive-pressure mode (e.g., open/closed circuit)</td>
<td></td>
<td></td>
<td>10,000</td>
<td>10,000</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. Employers may select respirators assigned for use in higher workplace concentrations of a hazardous substance for use at lower concentrations of that substance, or when required respirator use is independent of concentration.

2. The assigned protection factors in Table 1 are only effective when the employer implements a continuing, effective respirator program as required by this section (29 CFR 1910.134), including training, fit testing, maintenance, and use requirements.

3. This APF category includes filtering facepieces, and half masks with elastomeric facepieces.

4. The employer must have evidence provided by the respirator manufacturer that testing of these respirators demonstrates performance at a level of protection of 1,000 or greater to receive an APF of 1,000. This level of performance can best be demonstrated by performing a WPF or SWPF study or equivalent testing. Absent such testing, all other PAPRs and SARs with helmets/hoods are to be treated as loose-fitting facepiece respirators, and receive an APF of 25.

5. These APFs do not apply to respirators used solely for escape. For escape respirators used in association with specific substances covered by 29 CFR 1910 subpart Z, employers must refer to the appropriate substance-specific standards in that subpart. Escape respirators for other IDLH atmospheres are specified by 29 CFR 1910.134 (d)(2)(ii).

Facial Hair

Facial hair is not allowed while wearing a tight fitting facepiece respirator; it interferes with the fit and will allow more hazardous substances to leak into the facepiece. However, some mustaches, sideburns, and small goatees that are trimmed so that no hair underlies the seal of the respirator present no hazard and may be worn – only a properly performed fit test will ensure this.
Respiratory Protection Decision Flow Chart

The allowable use of a respirator depends on certain circumstances; two scenarios in which an employee may wear a respirator are:

1. **Employee must wear a respirator due to job-site conditions:** If concentrations of airborne contaminants cannot be effectively minimized to below permissible exposure limits through engineering or administrative controls then respiratory protection must be worn.

2. **Voluntary use by employee:** An employee may choose to wear a respirator under voluntary conditions when concentrations of airborne contaminants are below legal permissible exposure limits.

Start

- Is respirator use necessary to protect the health of an employee or required by the employer?
 - Yes
 - No

 Is respirator use voluntary?
 - Yes
 - No

 Is the respirator an approved elastomeric type (NIOSH Certified)?
 - Yes
 - No

Respirator program must include (See 29 CFR 1910.134):
- Procedures for selecting respirators for use in the workplace;
- Medical evaluations of employees;
- Fit testing procedures for tight-fitting respirators (required use only);
- Procedures for proper use;
- Procedures for cleaning, disinfecting, storing, inspecting, repairing, discarding, and otherwise maintaining the respirator;
- Training of employees in the respiratory hazards to which they are potentially exposed;
- Training of employees in the proper use of respirators, including putting on and removing them, any limitations on their use, and their maintenance; and
- Procedures for regularly evaluating the effectiveness of the program.

Respirator program must include (See 29 CFR 1910.134):
- Medical evaluations of employees;
- Procedures for cleaning, disinfecting, storing, inspecting, repairing, discarding, and otherwise maintaining the respirator;
- Determine that such respirator use will not in itself create a hazard and provide Appendix D of OSHA’s Respiratory Protection Standard (29 CFR 1926.134)

Is the respirator an approved disposable filtering facepiece (NIOSH Certified)?
- Yes
- No

Determine that such respirator use will not in itself create a hazard and provide Appendix D of OSHA’s Respiratory Protection Standard (29 CFR 1926.134)